студентка 2 курса магистратуры Кобзева В.М.

21 декабря 2020 г.

Эргодичность

Пусть фазовый объем сохраняется, движение происходит в некоторой ограниченной области D с объемом V_D , h(x) – некоторая функция. Введем формулы:

$$\overline{h}(x) = \lim_{t \to \infty} \frac{1}{t} \int_0^t h(F^t(x)) dt,$$

$$\langle h \rangle = V_D^{-1} \int_D h(x) dV, \quad dV = dx_1, ..., dx_n.$$

Будем называть $\overline{h}(x)$ – среднее по времени, а < h > – фазовое среднее.

Движение называется эргодическим, если для произвольной интегрируемой функции h(x) и почти всех начальных условий x_0 справедливо равенство временных и фазовых средних:

$$\overline{h}(x_0) = \langle h \rangle. \tag{1}$$

Если равенство (1) выполняется для всех (или почти всех) фазовых траекторий динамической системы, то система называется эргодической. В эргодической системе относительное время, проведенное фазовой траекторией внутри некоторой области, равно относительному объему этой области (независимо от выбора начальных условий). Таким образом, траектория эргодической системы будет равномерно и плотно заполнять всё фазовое пространство D.

 ${
m Puc.:}$ Пример: квазипериодическое движение на поверхности тора (эргодическая траектория при иррациональном значении отношения частот).

Эргодичность специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определенной вероятностью проходит вблизи любого другого состояния системы.

Для эргодических систем математическое ожидание по временным рядам должно совпадать с математическим ожиданием по пространственным рядам.

То есть для определения параметров системы можно долго наблюдать за поведением одного ее элемента, а можно за очень короткое время рассмотреть все ее элементы (или достаточно много элементов).

Если система обладает свойством эргодичности, то в обоих случаях получается одинаковый результат.

Преимущество эргодических систем заключается в том, что при достаточном времени наблюдения такие системы можно описать статистическими методами. Например, температура газа — мера средней энергии молекул. (Предварительно нужно доказывать эргодичность системы).